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Abstract
Digitally capturing vegetation using off-the-shelf scanners is a challenging problem. Plants typically exhibit large
self-occlusions and thin structures which cannot be properly scanned. Furthermore, plants are essentially dynam-
ic, deforming over the time, which yield additional difficulties in the scanning process. In this paper we present a
novel technique for acquiring and modeling of plants and foliage. At the core of our method is an intrusive acqui-
sition approach, which disassembles the plant into disjoint parts that can be accurately scanned and reconstructed
offline. We use the reconstructed part meshes as 3D proxies for the reconstruction of the complete plant and de-
vise a global-to-local non-rigid registration technique that preserves specific plant characteristics. Our method is
tested on plants of various styles, appearances, and characteristics. Results show successful reconstructions with
high accuracy with respect to the acquired data.

1. Introduction

3D plant modeling is an important problem with a wide
range of applications. In computer graphics, 3D plant mod-
els play an important role in the design of realistic game
scenes, physical effects simulations, and rendering. Within
the domain of plant biology, 3D plants are modeled and ex-
plored in the context of plant growth and behavior under
various simulations. In agriculture, we observe a growing
interest in the accurate acquisition and modeling of 3D plan-
t models for observations and measurements in the research
of pest management, fertilization, etc. Nevertheless, accurate
and efficient acquisition and modeling of real world plants
remain an open problem.

Various attempts have been made to create and mod-
el 3D plants from different sources. Approaches such
as procedural modeling [PL96, PHL∗09], image-based
modeling [QTZ∗06, YGCO∗14], and sketch-based model-
ing [IOOI05, LRBP12] have been successfully applied to
create realistic 3D tree and plant models. Common to these
works is the creation of realistic-looking 3D plant model-
s using some guidance and constraints from the real world.
However, acquisition and modeling of the exact geometry
and topology of the plant are still very difficult.

We introduce a novel framework for acquisition and model-
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Figure 1: Reconstruct complete 3D plant models (center)
with heavily self-occluded leaves (Aglaonema crispum on
top) and highly-curved, non-developable leaves (Dracaena
sanderiana at bottom). The texture mapped rendering results
(right) closely resemble the plant photos (left).
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ing the full plant geometry and topology from 3D scans. In
contrast to the recently proposed X-ray tomography (CT) ac-
quisition system [IYYI14], our process utilizes off-the-shelf
3D scanners due to their growing popularity, availability and
ease-of-use. Our focus is on a modeling approach that recon-
structs the full 3D plant geometry and topology from scans
in an accurate and robust manner; see Figure 1.

Scanning plants is a challenging task. Plants typically con-
sist of multi-scale structures, complex topology and delicate
features. Additionally, plants present a large amount of self-
occlusions as entangled leaves, hidden stems and interior
parts. Hence, it is practically an impossible task to sample
the full plant geometry using standard scanning techniques.

We develop a novel intrusive acquisition system which al-
lows to reconstruct the full geometry and topology of the
plant. In the first step we loosely scan the plant to form a base
reference geometry. This base geometry is incomplete with
large missing parts due to self-occlusions and inaccessible
parts. In the next step we disassemble the plant by cutting it
into disjoint parts, which we scan independently and recon-
struct their exact geometry. Finally, we register all disjoint
part models back into the base geometry.

The disassembly process introduces deformations in the
parts, as they are removed from their original plant config-
uration. We assemble the parts back into the base geometry
using a non-rigid registration method, which operates in a
greedy manner. That is, in each iteration we register only
one part to the base geometry. We consider plant character-
istics and prevent self-collisions, which may occur due to the
large entanglement of leaves and stems.

The overall scanning process is destructive as the plant is
cut into parts. However, this allows instant access for model-
ing hidden geometries and topologies. In addition, dissected
parts can be scanned and modeled with high accuracy, al-
lowing the final accurate reconstruction of the complete 3D
plant, which otherwise could not be made even manually due
to the complexity and inaccessibility of the plant.

Our work makes two main contributions:

• we introduce a new plant acquisition pipeline, which is
intrusive and acquires the full geometry of the foliage;

• we develop a robust global-to-local non-rigid registration
algorithm, which uses the knowledge of the plant geome-
try combined with a general deformation approach to fully
reconstruct the complete plant.

2. Related work

Rule-based plant modeling. 3D modeling methods for
plants and trees have been an active research problem in
computer graphics for more than two decades. Early work-
s on plant modeling involved parameterized algorithms and
rule-based procedural methods [PJM94, PL96]. Rule-based

techniques make use of a small set of generative rules or
grammars to create branches and leaves. Nevertheless, these
methods require a high-level of expertise and focus on the
creation of synthetic plants with some amount of regularity.

Sketch-based plant modeling. Sketch-based techniques
have been introduced mainly in the context of plant mod-
eling, allowing users to create 3D plants and trees using
just few strokes. Ijiri et al. [IOOI05] present a method for
modeling flower petals and leaves, which they later ani-
mate [IYKI08] by drawing construction strokes. Okabe et
al. [OOI07] reconstruct 3D branching skeletons from 2D s-
ketches by maximizing distances between branches. Longay
et al. [LRBP12] introduce an interactive procedural model-
ing of trees on a tablet. In [CNX∗08] trees are modeled from
2D sketches using probabilistic optimization and parameters
obtained from a database of tree models. A global to local
sketching approach is applied in [WBCG09] and [IOI06] for
trees and flowers, respectively. Nevertheless, these methods
do not aim at exact plant reconstruction and are limited on
plants with relatively simple geometry and topology.

Image-based plant modeling. A number of approaches try
to reconstruct plants from multiple images. Reche-Martinez
et al. [RMMD04] use registered photos to generate a volu-
metric representation of the tree canopy and its branches and
twigs. Neubert et al. [NFD07] improve this by using only
loosely arranged input images and a particle-system to pro-
duce small branches. Other approaches [SRDT01,TZW∗07]
extract visual hulls from input images and use L-systems
to synthesize branches within these hulls. Later, Tan et
al. [TFX∗08] propose a procedural method that generates a
statistically plausible tree model from a single image. Sim-
ilarly Yan et al. [YGCO∗14] reconstruct flower petals from
an image by fitting geometrical structures while assuming
some regular pattern.

Template-based plant modeling. Structure-from-motion
was used to compute a 3D point cloud of the plant that
later is reconstructed by fitting botanical primitive tem-
plates [QTZ∗06]. Similar to us, Bradley et al. [BNB13]
use non-rigid registration to fit a leaf exemplar to fine s-
cale dense foliage. In contrast, we choose not to use a tem-
plate as our goal is to recover the exact geometry of indi-
vidual plant leaves and to capture their shape variations. Li
et al. [LFM∗13] present a method for analyzing a growing
plant from time-lapse point clouds obtained by a camera pro-
jector system. Nevertheless, these approaches cannot recov-
er the full plant geometry and topology as they cannot access
self-occluded parts in complex plants.

Point-based plant modeling. With scanning technology
becoming available, approaches for plant and tree recon-
struction from scan point sets were developed. Xu et
al. [XGC07] cluster edges in a spanning graph to reconstruc-
t the tree skeleton. Livny et al. [LYO∗10] reconstruct tree
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(a) Initial scan. (b) Plant cutting, acquisition and reconstruction. (c) Non-rigid registration. (d) Full reconstruction.

Figure 2: Overview of our intrusive acquisition and plant modeling algorithm.

skeletons from point clouds of multiple trees by computing
minimal spanning graphs. In a subsequent work they com-
bine noisy points of the foliage into what they call lobes,
thus avoiding reconstructing small details [LPC∗11]. Pirk
et al. [PSK∗12] convert this framework into a dynamic data
structure that allows trees to react to their environment.

Bucksch et al. [BL08, BLM09] cluster points and for-
m a skeleton by connecting adjacent clusters. Côté et
al. [CWFV09] synthesize minor geometries on the re-
constructed branches based on light scattering proper-
ties obtained from additional intensity data. Roumonen et
al. [RKK∗13] reconstruct the branches by locally recon-
structing patches that are then combined to the branches.
However, none of these techniques attempts at handling the
occluded geometry and topology in a principled way.

Recently, Yan et al. [YSL∗14] introduce a proactive scan-
ning technique, in which the user are allowed to both move
around the scanner and push aside the occluding parts so
that the hidden areas can be captured. Their motion analy-
sis is however designed to handle only a specific interaction
of occluder removal, and hence not suitable for plants with
complex self-occlusion patterns. Ijiri et al. [IYYI14] devel-
op a X-ray tomography (CT) acquisition system with the
same goal of full 3D flowers and plants reconstruction. They
use an active contour model to interactively reconstruct the
flower shaft and sheet components. In contrast, our method
focuses on scanned point clouds and adapts a curve-driven
sweeping technique [YHZ∗14] for the accurate reconstruc-
tion of plant parts in a fully automatic manner.

3. Overview

Our intrusive acquisition process involves cutting the plan-
t into independent parts, thus removing self-occlusions and
exposing the full plant geometry to the scanner. Typically
cuts are placed near the stem to separate leaves, petals and
buds from the complex branching structure.

At initial stage, we loosely scan the plant, yielding a refer-
ence geometry as shown in Figure 2(a). This gives us a par-
tial scan, where the interior of the plant may be missing due

to self-occlusions. Nevertheless, the partial scan can guide
the subsequent registrations of individual parts.

Next, we scan and reconstruct each plant part independent-
ly; see Figure 2(b). We adapt existing point-processing algo-
rithms [HWCO∗13, YHZ∗14] for computing the `1-medial
skeleton and the curve-driven reconstruction of thin stem
and leaf structures. Due to their delicateness, the dissect-
ed stems and leaves may deform and hence have different
shapes from those captured in the initial scan. As a result,
conventional registration algorithms cannot be applied.

To address this problem, we register each separate plant part
back to its physical reference position in a global-to-local
manner; see Figure 2(c). We allow globally large non-rigid
deformations and locally smooth fitting transformations of
each leaf, which account for plant properties and preserve
plant features. Throughout the process we avoid plant parts
to intersect with formerly registered leaves and stems, and
then fuse all model parts into a unified full 3D plant recon-
struction as shown in Figure 2(d).

4. Acquisition and plant part reconstruction

4.1. Intrusive acquisition

Due to the nature of plants, such as heavy self-occlusions, i-
naccessible parts, diverse topologies, slim petioles, and com-
plex foliage geometries, it is impossible to obtain a complete
or even semi-complete scan using conventional acquisition.
We, first, roughly scan the given plant from several views
and register the scans together to form a reference point
cloud model, referred as Q, for the whole plant. As shown in
Figure 2(a), due to occlusions, the obtained geometric model
is incomplete with large missing parts. We then disassemble
the plant by cutting it into disjoint leaves with their petioles,
from exterior gradually to the interior. Each cut is executed
at the root of the stem or the junction of petioles, with the
cutting order recorded, e.g, at the top of Figure 2(b).

For each individual part k cut from the plant, an additional
scan is performed to capture its shape, free from occlusions.
Since most plants have very thin leaves and slim stems, it is

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



K. Yin, H. Huang, P. Long, A. Gaissinski, M. Gong, A. Sharf / Full 3D Plant Reconstruction via Intrusive Acquisition

very difficult, if not impossible, to capture manifold meshes
for these leaves using current commercial scanners. Hence,
we only scan each leaf part from one side, which gives us
a thin layer of point cloud Qk that captures rich geometric
details on the leaf surface.

4.2. Sweeping reconstruction for parts

We now reconstruct a manifold mesh Mk for each indi-
vidual part k based on the scan data Qk. The conventional
parameterization-based [DG06] or implicit function driven
surface reconstruction [CBC∗01, KBH06] methods are not
suitable for such data due to rich geometric features and
irregular open boundaries. Inspired by the work of Mor-
fit (Morph and Fit) [YHZ∗14], we here adopt a curve-
sweeping-based reconstruction approach to accurately re-
construct the leaf geometry with feature preservation.

The reconstruction algorithm starts with automatically de-
tecting the two endpoints of the leaf part k: one at the tip
of the leaf and the other at the bottom of the petiole. It then
computes the `1-medial skeleton [HWCO∗13] for Qk with
an additional constraint that the skeleton connects the two
detected and fixed endpoints. Since the skeleton for the leaf
part is in general a single curve, this automatic skeletoniza-
tion process behaves quite robustly.

Next, the skeleton curve Sk is uniformly sampled into nk
skeletal points {pi} with a spacing defaulted to 4% of its
length. For each point pi, we compute a slicing plane that is
perpendicular to the skeleton curve at pi. Each original point
q from Qk is projected onto its closest slicing plane, forming
a set of cross-sectional slices {si} along the skeleton. Fur-
thermore, based on the directionality degree [HWCO∗13]
calculated using the projected points in slice si, a binary clas-
sification similar to the one used by Li et al. [LFM∗13] is
applied to label the corresponding skeletal point pi as either
leaf or stem point; see Figure 3(a). In addition, to evaluate
whether a point q from the leaf part is close to a boundary,
we utilize a feature function θ(q) similar to the 2D point
cloud completeness measure defined in [YHZ∗14]. To com-
pute θ(q), we first project the local neighborhood of q onto
the 2D plane calculated by PCA. For each projected point on
the plane, we form a unit vector pointing from q to that point.
We radially sort these unit vectors and define θ(q) as the
maximum angle between any pair of the neighboring vec-
tors. The function value θ is then normalized into [0, 1]. See
the color mapping at the top of Figure 3(a), where more red
color indicates the point more closely to the boundary.

In general, we find that the stems of plants have cylindrical
shapes or can be closely approximated by generalized cylin-
ders. Hence, for each slice si associated with a stem skele-
tal point pi, we fit its profile curve using a circular NURBS
curve [WPL06]; see the bottom of Figure 3(b). On the other
hand, for each slice s j associated with a leaf skeletal point
p j, except for the one at the tip, we compute a clamped

(a) Skeleton curve. (b) Profile curves. (c) Reconstruction.

Figure 3: Sweeping reconstruction for a leaf part: (a) the
point on skeletal curve is labeled as either leaf (blue) or stem
(green) point, and the input scan points belonging to the leaf
are colored according to the value of the boundary feature
function θ(q), i.e., more closely to the boundary more red;
(b) a clamped (or circular) NURBS profile curve is computed
for each leaf (or stem) slice; (c) automatically sweeping the
profile curves along the skeleton curve efficiently produces a
manifold mesh close to a real leaf part.

NURBS fitting curve. We then generate a closed NURBS
profile curve around this clamped NURBS curve with the
thickness gradually decay from the center to the boundary;
see the top of Figure 3(b). Empirically, we set the center
thickness to be 2% of the leaf length. The same number of
control points (20 by default) is used for all profile curves,
which also converge to the same position at the leaf tip.

With the profile curves {ci} generated for both the leaf
and the stem parts, we apply the sweeping reconstruc-
tion [YHZ∗14] on scan data Qk to obtain a complete mani-
fold mesh Mk for part k; see Figure 3(c). That is, we optimize
the following function

argmin
{ci}

∑
i

(
Ed(ci)+αEs(ci−1,ci,ci+1)+βiEc(ci)

)
. (1)

Comparing with the original Morfit objective function def-
initions (2-5) in [YHZ∗14], our initial profile curves are u-
niformly and densely sampled and fit the data well, we thus
removed the morphing term Em, resulting only the data fit-
ting term Ed and the smoothness term Es being used, where
the latter one penalizes large deformations between adjacent
profile curves with a defaulted weight α = 0.01. Meanwhile,
we embed the boundary feature function θ(q) into the data
fitting term, which adds stronger weights to the points closer
to the leaf boundary and hence encourages the reconstruc-
tion to closely follow the scanned boundary. Moreover, to
prevent the plant stem from folding during the reconstruc-
tion (e.g., see defects in the Morfit result in Figures 7(m-o)),
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we add a convex term Ec into the interpolation optimization:

Ec(ci) = 1− 4π ·area(ci)

(length(ci))2 ,

where area(ci) denotes the area within the profile curve ci
and length(ci) is its perimeter. We empirically set the weight
βi = 0.1 when ci is at the stem, otherwise, βi = 0.

Note that, although the Morfit technique provides users with
interactive tools for correcting errors in skeletal and profile
curves, these tools are not needed in our system. This is be-
cause both skeletal and profile curves can be robustly cal-
culated since we handle only one leaf at a time and utilize
the assumptions based on leaf features, i.e., skeleton run-
ning through the two endpoints and the profile curves hav-
ing thin shapes. As a result, our adapted approach can fully
automatically reconstruct plant parts through the sweeping
optimization while maintaining high reconstruction accura-
cy; see Figure 7 for one example. If adjacent profile curves
intersect each other, the reconstructed surface may contain
folding artifacts (see e.g., Figure 19 in [YHZ∗14]), however,
such high curvature cases are really rare for plant leaves.

5. Global-to-local non-rigid registration

With all the individual cut-out parts reconstructed, our next
task is to register the part meshes {Mk} with the reference
point cloud model Q to create a complete mesh model for the
original plant. This registration process can also be consid-
ered as assembling disjointed meshes {Mk} in a coherent but
non-right manner using Q as a guide. In practice, we register
Mk one by one, in the order that the corresponding parts were
cut. Thus, the whole procedure starts with registering outer
leaves to well scanned areas, and then gradually moves into
the inner and occluded leaves until all meshes are registered.

The registration between Mk and Q cannot be solved using
a conventional algorithm due to i) the two are represented
using different geometries, i.e., one in a complete mesh and
the other in a highly incomplete point cloud; and ii) the same
physical part often has different shapes in the two represen-
tations due to the deformation caused by cutting off other
leaves and the gravity. To properly register them, we devel-
oped a novel global-to-local algorithm that can not only ac-
commodate large and non-rigid deformation but also has no
strict requirement on the initial placements; see Figure 4.
We avoid explicit data segmentation operations during the
whole process, such that the registration behaves quite ro-
bustly even in challenging cases; see Figure 10.

5.1. Skeleton-driven global registration

The global registration procedure starts with users casual-
ly placing the mesh Mk near the desired location. Based on
this initial position of the mesh, we compute a dense corre-
spondence set Γ. The set Γ consists of two types of corre-
spondences. One matches each vertex vi on Mk to its closest

point on Q, whereas the other matches each point q j from
Q to its closest point on Mk. Two points < vi,q j > are con-
sidered as a valid correspondence only when the distance
between these two is smaller than a given threshold, which
is defaulted to 10% of the plant size.

With Γ defined, we now deform the mesh Mk so that the to-
tal inner-correspondence point distance can be minimized.
At this global registration step, the deformation for Mk is
controlled by translating its individual skeletal point pi to
p′i = pi + ti and/or rotating it about the normal of the corre-
sponding slicing plane by ri degree. Given a set of ti and ri
values, the deformed mesh is computed using bounded bi-
harmonic weights introduced in [JBPS11].

To compute optimal ti and ri values, we minimize the fol-
lowing objective function:

arg min
{ti,ri}

D(M′k({ti,ri}),Q)+λg L(S′k({p′i})), (2)

where D(·, ·) is a data fitting term and M′k({ti,ri}) refers to
the mesh obtained by deforming Mk under transformations
{ti,ri}. The regularization term L(·) on the skeleton curve S′k
after the translations {ti} is defined as:

L(S′k) =
1+α|∆S′k

|
nk

∑
2≤i≤nk−1

|p′i+1 + p′i−1−2p′i |, (3)

where ∆S′k
denotes the change of the skeleton length and

nk is the number of skeletal points sampled on S′k. This
weighted Laplacian regularization can ensure the uniform
point distribution along the curve skeleton with the skeleton
length preservation. The balancing parameter λg in (2) and
the weight α in (3) are defaulted to 0.1 and 100, respectively.

The data fitting term D(·, ·) computes the weighted sum of
the inner-correspondence distances. To cut the computation-
al cost, instead of evaluating the inner-correspondence dis-
tances for all correspondences in set Γ, we randomly down-
sample Γ to a subset Γ

′ with 1000 correspondence pairs by
default, and define D(·, ·) as:

D(M′k,Q) = ∑
<vi, q j>∈Γ

′

v′i∈M′
k ,q j∈Q

w(vi, q j) f (vi, q j)|v′i−q j|, (4)

where w(·) is the weight function and f (·) measures the con-
fidence on the correspondence.

To assign a weight for each correspondence, we consid-
er shape boundaries on both Mk and Q. Detecting bound-
aries for Mk is straightforward as they correspond to the end
points of the NURBS fitting curves. The boundary feature
function θ can be utilized again here to evaluate whether a
given point q is close to a boundary in the point cloud Q or
not. Then, each correspondence < vi, q j > is given a weight
computed using:

w(vi, q j) = exp(−φ(vi)(1−θ(q j))/σ
2
w), (5)

where φ(vi) denotes the normalized distance between vi and
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(a) Initial placement.
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Figure 4: Global-to-local non-rigid registration: (a) the mesh and the corresponding point cloud do not need to be well-
aligned in the initial placement; (b) the correspondences between the two are shown in colored lines with color indicating the
weight w (red is higher and blue is lower); (c) same correspondences with color indicating the confidence f (the incorrect
correspondences along the stem have low (blue) confidence values); (d) multiplying w and f gives good evaluation on the
correspondences; (e) through bending and twisting the skeleton, we can register the mesh and the point cloud in a non-rigid
manner; (f) differences between the two representations can be further minimized using local skin-guided alignment.

its closest boundary vertex. Assigning higher weights to cor-
respondences closer to boundaries allows the registration to
better match the contour of the two shapes; see an example in
Figure 4(b). To further evaluate the quality of the correspon-
dences in Γ

′, we introduce an additional confidence measure
f (·) defined as:

f (vi, q j) = exp(−(d(vi, q j)/d(v̂i, q j))
2/σ

2
f ), (6)

where d(·, ·) computes the Euclidean distance between two
points, and v̂i is the closest vertex to the point q j on all oth-
er part meshes except for Mk. Thus, the confidence value is
higher only when the current registering mesh Mk is closer
to the point than other part meshes; see for example how the
confidence values vary from the top to the bottom of the leaf
in Figure 4(c).

As a result, the data fitting term weighted with both the
boundary preference and the correspondence confidence,
e.g., as shown in Figure 4(d), leads to the robust performance
in general cases. In our implementation, both Gaussian pa-
rameters σw and σ f are set to 1 by default. The deformation
parameters {ti,ri} that optimize (2) are computed using the
BFGS solver [NW99]. Once the parameters are found, we
update Mk with M′k({ti,ri}), Sk with S′k({ti}), and then up-
date the correspondence set Γ using the new vertex locations.
The above skeleton-driven global registration step is then re-
peated until converges. In practice, we found these process
converges after 2-3 iterations; see Figure 4(e).

5.2. Skin-guided local alignment

Even though the above registration step can bend and twist
the mesh Mk to best match the point cloud for the same leaf
part in Q, it cannot alter the local geometry of the mesh to

align with the scanned data. To further improve the registra-
tion and to generate a faithful model, we also apply skin-
guided local alignment. That is, instead of deforming Mk
through adjusting positions and orientations of its skeletal
points, we now manipulate the positions of a set of skin con-
trol points down-sampled from the mesh surface.

More precisely, we first uniformly down-sample the vertices
on Mk to obtain a set of skin control points (mk = 40 by
default) using the WLOP operator [HLZ∗09], referred to
as {ui} (shown as big blue dots in Figure 4(d)). Through
adding a displacement ti to each skin control point ui, we
can deform the mesh accordingly using bounded biharmon-
ic weights [JBPS11]. Please note that here we do not ad-
just vertex locations in Mk directly since it may result in a
non-manifold mesh. Deforming mesh through bounded bi-
harmonic weights, on the other hand, always maintains the
manifold. Also note that increasing the number of skin con-
trol points can noticeably improve the alignment accuracy
but has higher computation cost.

To compute the optimal displacement parameters, we mini-
mize the following objective function:

argmin
{ti}

D(M′k({ti}),Q)+λlR({u′i}), (7)

where D(·, ·) is the same data fitting term defined in (4) and
M′k({ti}) refers to the mesh deformed under control points
displacements of {ti}. The regularization term R(·) on the
control points {u′i = ui + ti} is defined as:

R({u′i}) =
∑1≤i≤mk

|∆u′i |
mk

,

where ∆u′i denotes the average distance change from u′i to
its K-nearest (K = 4 by default) neighboring control points.
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With R we can ensure the uniform control point distribution
about the Mk mesh surface and prevent Mk from undesirable
shrinkage. The balancing parameter λl is defaulted to 0.1.

This local non-rigid alignment is solved by BFGS and re-
peated with the updated correspondence Γ until converges,
which takes 2-3 iterations. Figure 4(f) shows the final reg-
istration result after the skin-guided alignment step, which
suggests that the original point cloud is faithfully recon-
structed with the mesh model.

5.3. Collision correction

Under ideal situations where the initial acquired reference
point cloud model Q contains sufficient data to guide the de-
formation of individual meshes, simply registering all indi-
vidual meshes using the aforementioned procedure gives us
a complete plant model. However, in many cases, an inner
leaf part k may not be well captured in Q due to occlusions.
Consequently, the corresponding mesh Mk may not be prop-
erly deformed, causing it to collide with other mesh parts.

To address this problem, every time a mesh Mk is registered,
we detect if Mk intersects with existing meshes and, if yes,
deform Mk to clear the collisions. Here only Mk is changed
based on the facts that: i) we always cut the parts from out-
side gradually to inside and the corresponding meshes are
registered in the same order; ii) the scanned data in Q is
generally more reliable for the already-registered outer parts
than for the to-be-registered inner part Mk.

To resolve collision through deformation, we first detec-
t which part of Mk is intersecting with existing meshes and
what it is intersecting with. This results in two cases: the
stem tip on Mk intersecting with an existing stem, the stem
or the leaf on Mk intersecting with an existing mesh. Under
the first situation, we skip the collision handling and move
to the fusion step to be discussed in Section 5.4.

When the stem part of Mk intersects with an existing mesh
Me, we gradually deform Mk using the skeleton-driven de-
formation described in Section 5.1 until the collision is
cleared. That is, we first calculate the centroid cek (blue dot
in Figures 5(a) and 13(b)) of the area on Mk that is involved
in the collision; and compute a displacement vector lek that
points from cek to its closest leaf boundary point or stem
point on Me. We then locate the skeletal point pi on Mk that
is closest to cek and move its position to pi + ε · lek, where
the constant parameter ε = 1.05. Finally, the skeleton-driven
deformation with bounded biharmonic weights is applied to
deform Mk; see Figures 5(a) and 13(b). Collision detection
is performed again using the newly deformed mesh M′k and
the process is repeated until there is no collision.

When the leaf part of Mk intersects with an existing mesh
Me, we deform Mk using the skin-guided deformation dis-
cussed in Section 5.2 to make local adjustment. Similar to
the previous case, we first compute the collision centroid cek

(a) Left: the stem on Mk intersects with an existing mesh. Right:
moving the stem to the right (along the blue arrow) through
skeleton-driven deformation clears the collision.

(b) Left: the leaf on Mk intersects with an existing mesh. Right:
moving the leaf upward (along the blue arrows) through skin-guided
deformation clears the collision.

Figure 5: Collision correction for a newly inserted mesh Mk.

(big blue dot in Figure 5(b)) and the corresponding displace-
ment vector lek. Then the skin control points (4 small red
dots in Figure 5(b)) surrounding cek are located. The loca-
tion of each skin control point ui is moved along its nor-
mal ni to ui + ε(lek ·ni)ni. With these control points moved
while keeping others fixed, the mesh Mk is deformed; see
Figure 5(b). The collision detection and deformation process
is repeated until the collision is fully cleared.

5.4. Stem fusion

The aforementioned registration and collision correct steps
place meshes together in a way to best resemble the original
plant. However, different meshes may either intersect with
or disconnected from each other, so we still do not have a
single manifold mesh for the whole plant yet. Hence, at the
last step, we perform stem fusion operations.

For plants with trunks, e.g., in Figure 2, the fusion step starts
with scanning the remaining trunk after all leaf parts are cut.
The obtained point cloud is used to generate a base mesh us-
ing Screened Poisson reconstruction [KH13]. For plants that
can be completely dissembled into leaf parts, e.g., in Fig-
ure 6, the fusion step starts from the most inner part model,
i.e., the last piece. Then, one by one, we fuse all the meshes
together in the reverse order of the cutting, i.e., from inside
to outside. To fuse a mesh Mk, we first detect if it intersects
with the mesh that has already been fused together. If it is,
merging is performed with a CSG operation [RCG∗01]. If
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(a) Before fusion. (b) After fusion.

Figure 6: Stem fusion: disconnecting and/or intersecting
leaf parts in (a) are merged together to form a manifold mesh
for the whole plant.

#Fig 10.1 10.2 10.3 10.4 8 9
NQ 80K 82K 67K 27K 89K 72K
NL 17 13 13 17 8 9
NS 15 17 18 16 17 15
TS 157s 110s 126s 108s 98s 75s
NC 40 40 40 40 40 40
TC 170s 156s 148s 100s 84s 87s
TP 4 2 1 2 3 0

Table 1: Timing for our registration and reconstruction of
six different plants shown in Figures 10, 8 and 9. NQ: number
of initial scan points; NL: number of leaves; NS: number of
average skeletal points per leaf; TS: time used for skeleton-
driven global registration; NC: number of average control
points per leaf; TC: time used for skin-guided local align-
ment; TP: time used for the post-processing.

no intersection is found, we search for the closest stem or
the closest point on the ground plane, onto which we snap
the bottom of Mk through skeleton-driven deformation, be-
fore the CSG merging. As shown in the results, this yields
manifold meshes for the various plants.

6. Results and discussion

Scanning and timing. We use the Artec Spider scanner for
scanning all examples presented in this paper. The Spider’s
best working distance is [0.17m, 0.3m] with the resolution
around 1mm and the angular field of view H30o ×W21o.
The average sweeping reconstruction time per leaf is about
3 seconds, and the average vertex number per reconstructed
leaf mesh is 2K. In Table 1, we list the data information and
the running time for the registration and the final reconstruc-
tion of six plants. The computation timing is measured on an
Intel Xeon E5-2687W CPU @3.40GHz with 16GB RAM.

Quantitative evaluations. We start our experiments with a
synthetic plant model so that the ground truth is available.

Figure 8: The reconstruction for a Dracaena sanderiana
whose leaves (top middle) are highly curved and are not de-
velopable surfaces. Even though the reference point cloud
captured (top right) is incomplete, casually placing the in-
dividual mesh model over the point cloud (bottom left) is
sufficient for proper registration (bottom right).

Figure 9: The reconstruction for Sansevieria trifasciata
whose leaves are tightly pack together. Without cutting off
the outer leaves, it is close to impossible to scan the shape
of inner ones. However, even though reference point cloud
model (top right) contains large missing areas, our regis-
tration approach is still able to deform individual meshes
to match the scan reasonably well (bottom right) with even
loosely placed initial positions (bottom left).

Due to strong self-occlusions, the virtual scan for the whole
plant as shown in Figure 7(b) is not complete enough for
automatic and accurate reconstruction. For example the Ball-
pivoting surface reconstruction [BMR∗99] approach failed
to produce a connected and manifold mesh; see Figure 7(c).

To evaluate our approach, we detach individual leaves from
the model as if they were cut from a real plant. Each leaf
part is then deformed using a non-rigid physical-based de-
formation technique [BJ05], which simulates the leaf shape
changes after the gravity orientation is altered. The deformed
models (gray ones in Figure 7(d)) are scanned virtually from
one side to generate individual point clouds; see Figure 7(e).
The leaf models that we automatically reconstruct from the
point clouds and the corresponding reconstruction errors are
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(a) 3D model. (b) Virtual scan of (a). (c) Ball-pivoting. (d) Leaf models before (blue) and after (gray) deformation.

(e) One-side virtual scans for the deformed (gray) models in (d). (f) Our automatic leaf reconstruction from (e).

(g) Leaf reconstruction errors for (gray) models in (d). (h) Initial. (i) Final model. (j) Slice of (i).

(k) `1-skeleton. (l) Skeleton editing. (m) Morfit sweeping. (n) 50 edits. (o) Error of (n). (p) Slice of (o).

Figure 7: Quantitative evaluation on a synthetic (Spathiphyllum kochii) model (a) for both our intrusive plant reconstruction
(e-i) and the interactive Morfit reconstruction (k-o). Our approach yields the more accurate reconstruction (i-j), whereas the
non-intrusive Morfit approach has over-smoothed output and higher reconstruction error (n-p) even after interactively editing
50 profile curves. The maximum reconstruction errors shown in (g), (i), and (o) are about 0.007, 0.015 and 0.036, respectively,
given that the input modal (a) has been normalized into a unit cube.

shown in Figures 7(f) and (g), respectively. Roughly posi-
tioning these leaf models into the whole-plant scan gives us
an initial plant model (Figures 7(h)), which evolves into the
final model after global-to-local registration and fusion (Fig-
ures 7(i)). It is worth noting that our approach successful-
ly aligns the reconstruction models of deformed leaves with
the original undeformed leaves only based on the incomplete
point clouds of the whole plant as shown in Figure 7(b).

In comparison, to reconstruct a model for the same plant us-
ing the Morfit algorithm, we first need to extract a skeleton
(Figure 7(k)) from the whole-plant scan and manually cor-
rect errors in the skeleton (Figure 7(l)). Then, after a mesh
model is obtained through Morfit sweeping, additional man-
ually editing on the profile curves are needed to adjust the
shapes and positions of the leaves. Nevertheless, even af-
ter interactively editing 50 profile curves, the reconstruction
model is still over-smoothed and has higher error than the

one obtained using our approach; compare Figures 7(i) and
(o) with their zoom-ined cross slices in Figures 7(j) and (p).

Tests on real plants. We also applied the presented in-
trusive acquisition technique on a variety of real plants.
They demonstrate how well the technique handles a num-
ber of challenging situations. For example, the Aglaone-
ma crispum plant shown in Figure 1 (top) contains soft in-
ner leaves whose shapes are constrained by the outer ones.
Once the outer leaves are removed, the shapes of inner
ones change. The leaves of the Dracaena sanderiana var.
mediopicta shown in Figures 1 (bottom) and 8 have highly
curved and non-developable surfaces, making both the re-
construction for individual leaves and their registration very
challenging. The Epipremnum aureum and Aglaonema mod-
estum shown in Figures 5 and 10 (3rd row) have long and
slim stems, which often require careful collision handling.
The Sansevieria trifasciata in Figure 9, the Stromanthe san-
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(a) Incomplete scan. (b) Initial placement. (c) Slice of (b). (d) Global-to-local reg. (e) Slice of (d).

(f) The texture mapped final reconstructions from (d) with the original plant photos in the insets.

Figure 10: Reconstruction of four complex plants. From top to bottom, we have Stromanthe sanguinea, Calathea majestica,
Aglaonema modestum, and Lilium casa blanca. The results show that the presented global-to-local registration step (d) can
effectively reduce the reconstruction error caused by the initial imprecise positioning (b) of the leaf models. The color of scan
points in (b) and (d) encodes the closest distance to the meshes (red is further and blue is closer). For better illustration, the
effect of registration is also demonstrated using selected 2D cross sections in (c) and (e). The texture (from plant photos) mapped
models in (d) are rendered in (f), which faithfully resemble the plant’s appearances in the real photos (insets).

guinea and Calathea majestica in Figure 10 (first 2 rows)
have leaves tightly packed, making it nearly impossible to
scan the inner ones without using an intrusive approach. The
results show that our method performs well in all cases.

Although the algorithm is designed for scanning plants, it
can also be applied to flowers with large and overlaid petal-
s. Figure 10 (4th row) shows our results on a Lilium casa
blanca. Although the petals are highly curved and non-
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(a) Photo. (b) Incomplete scan. (c) Leaf templates and branches reconstructed.

(d) Initial placement. (e) Global skeleton-driven reg. (f) Local skin-guided align. (g) Final reconstruction.

Figure 11: The reconstruction of a Dracaena sanderiana var. marginatum (a) using leaf templates. After scanning five selected
leaves as templates (c), the whole plant can be reconstructed by reusing the templates at multiple places. As shown in (e-f), the
global-to-local registration step can effectively adjust the template positions and shapes to fit individual leaves.

(a) Photo. (b) Scan. (c) Recon.

Figure 12: The limitation on the leaf reconstruction through
sweeping. Top row: we assume the leaf has tips on both end-
s and thus cannot handle leaves with concave shapes very
well. Bottom row: original holes on the leaf surface will be
ignored due to the sweeping reconstruction operation.

developable, our approach is able to accurately reconstruct
their shapes and register them into a complete flower model.

Finally, for plants that have a large number of leaves but

(a) Collision. (b) Correction. (c) Ground truth.

Figure 13: The limitation on the collision correction. When
collision between two stems is detected (a), it is resolved by
pulling one away from the other (b). While the reconstruc-
tion (b) looks good, it is different from the ground truth (c).

many of them have similar shapes, our approach can also
reconstruct complete models using just a few templates ob-
tained by scanning representative leaves. Figure 11 shows
how a Dracaena sanderiana var. marginatum plant with 25
leaves is reconstructed from only five leaf templates.

Limitations. Our technique still has its limitations. First of
all, the plant to be scanned need to be cut into pieces. Hence,
users may not want to apply this technique on rare or valu-
able plants. In fact, we did attempt to scan inner leaf parts
by moving away the outer ones, rather than cutting them,
similar to the way that proactive scanning [YSL∗14] does.
However, we found that, due to the limited access angles for
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(a) Scan. (b) Registration. (c) Photo.

Figure 14: The limitation on handling heavily occluded
leaves, where the initial scan data is missing significantly
(a). Although the mesh model for the leaf highlighted in the
pink box is aligned well to the partially scanned point cloud
(b), its final position and shape differ from the original one
(ground truth) shown in the photo (c).

the scanner and the usually large non-rigid leaf deformation-
s, the quality of the scan data and the following registration
are not good enough for accurate and automatic reconstruc-
tion. We plan to further study the feasibility of an intrusive
but non-destructive acquisition approach.

At technical level, our current approach assumes that the
plant leaves have a clear tip point, which can be automati-
cally identified and used as a constraint for the skeletoniza-
tion and the subsequent sweeping reconstruction. For plants
with round-shaped or heart-shaped (concave) leaves, e.g., in
Figure 12 (top row), such a constraint needs to be elevated.
Figure 12 (bottom row) also shows that holes on the leaf
surface are ignored since the sweeping reconstruction we
used assumes that there is no topology changes among the
profile curves on different slices. In addition, our approach
resolves collision through pulling the colliding parts away
from each other. Under certain scenarios, this may pull the
parts toward the wrong directions; see Figure 13. And the
presented collision detection and solving algorithm may not
converge when multiple complicate collisions occur; for in-
stance, many petals are packed in a small area. Additional
user interventions are then needed. Finally, when a leaf is
hardly visible in the whole-plant scan, our approach cannot
precisely register the corresponding leaf model, due to the
lack of reliable matching correspondences; see Figure 14.

7. Conclusion and future work

This paper presents a novel intrusive acquisition approach
that can capture highly deformable and self-occluded plants.
The results show that the full geometries and topologies of a
variety of plants can be faithfully reconstructed.

Future work. While we focused on plant scanning in this
paper, the global-to-local skeleton-to-skin non-rigid registra-

tion approach that we developed is likely applicable to other
articulate yet soft objects. For example, a possible future di-
rection is to conduct complete scans for animals when they
are put into sleep to obtain accurate 3D models and then reg-
ister the models onto the dynamic but incomplete scans ob-
tained in real-time when the animals perform actions. This
would provide us an accurate and continuous 4D model.

Besides to develop an intrusive but non-destructive acquisi-
tion approach aforementioned, another possible direction we
like to explore is to replace the manually initial placemen-
t with a quality-driven position searching scheme, making
the whole registration and reconstruction process fully au-
tomatic. If this is achievable, the proposed technique can be
utilized more easily and its applications can further broaden,
such as 3D SLAM in a complex environment.
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BERT B., MĚCH R., BENES B., DEUSSEN O.: Plastic trees:
interactive self-adapting botanical tree models. ACM Trans. on
Graphics (Proc. of SIGGRAPH) 31, 4 (2012), 50:1–50:10. 3

[QTZ∗06] QUAN L., TAN P., ZENG G., YUAN L., WANG J.,
KANG S. B.: Image-based plant modeling. ACM Trans. on
Graphics (Proc. of SIGGRAPH) 25 (2006), 599–604. 1, 2

[RCG∗01] ROCCHINI C., CIGNONI P., GANOVELLI F., MON-
TANI C., PINGI P., SCOPIGNO R.: Marching intersections: an
efficient resampling algorithm for surface management. Proc.
IEEE Int. Conf. on Shape Modeling & Applications (2001), 296–
305. 7

[RKK∗13] RAUMONEN P., KAASALAINEN M., KAASALAINEN
S., KAARTINEN H., VASTARANTA M., HOLOPAINEN M., DIS-
NEY M., LEWIS P., ET AL.: Fast automatic precision tree mod-
els from terrestrial laser scanner data. Remote Sensing 5 (2013),
491–520. 3

[RMMD04] RECHE-MARTINEZ A., MARTIN I., DRETTAKIS
G.: Volumetric reconstruction and interactive rendering of trees
from photographs. ACM Trans. on Graphics (Proc. of SIG-
GRAPH) 23, 3 (2004), 720–727. 2

[SRDT01] SHLYAKHTER I., ROZENOER M., DORSEY J.,
TELLER S.: Reconstructing 3D tree models from instrument-
ed photographs. IEEE Computer Graphics and Applications 21,
3 (2001), 53–61. 2

[TFX∗08] TAN P., FANG T., XIAO J., ZHAO P., QUAN L.: S-
ingle image tree modeling. ACM Trans. on Graphics (Proc. of
SIGGRAPH) 27, 5 (2008), 108:1–108:7. 2

[TZW∗07] TAN P., ZENG G., WANG J., KANG S. B., QUAN L.:
Image-based tree modeling. ACM Trans. on Graphics (Proc. of
SIGGRAPH) 26 (2007), 87:1–87:6. 2

[WBCG09] WITHER J., BOUDON F., CANI M.-P., GODIN C.:
Structure from silhouettes: a new paradigm for fast sketch-based
design of trees. In Computer Graphics Forum (2009), vol. 28,
pp. 541–550. 2

[WPL06] WANG W., POTTMANN H., LIU Y.: Fitting b-spline
curves to point clouds by curvature-based squared distance min-
imization. ACM Trans. on Graphics 25, 2 (2006), 214–238. 4

[XGC07] XU H., GOSSETT N., CHEN B.: Knowledge and
heuristic-based modeling of laser-scanned trees. ACM Trans. on
Graphics 26, 4 (2007), 19:1–19:13. 2

[YGCO∗14] YAN F., GONG M., COHEN-OR D., DEUSSEN O.,
CHEN B.: Flower reconstruction from a single photo. Computer
Graphics Forum (Proc. of Eurographics) 33, 2 (2014). 1, 2

[YHZ∗14] YIN K., HUANG H., ZHANG H., GONG M., COHEN-
OR D., CHEN B.: Morfit: Interactive surface reconstruction from
incomplete point clouds with curve-driven topology and geome-
try control. ACM Trans. on Graphics (Proc. of SIGGRAPH Asia)
33, 6 (2014), 41:1–41:12. 3, 4, 5

[YSL∗14] YAN F., SHARF A., LIN W., HUANG H., CHEN B.:
Proactive 3d scanning of inaccessible parts. ACM Trans. on
Graphics (Proc. of SIGGRAPH) 33, 4 (2014), 157:1–157:8. 3,
11

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.


